by MiniMax
MiniMax-M2 is a compact, high-efficiency large language model optimized for end-to-end coding and agentic workflows. With 10 billion activated parameters (230 billion total), it delivers near-frontier intelligence across general reasoning, tool use, and multi-step task execution while maintaining low latency and deployment efficiency. The model excels in code generation, multi-file editing, compile-run-fix loops, and test-validated repair, showing strong results on SWE-Bench Verified, Multi-SWE-Bench, and Terminal-Bench. It also performs competitively in agentic evaluations such as BrowseComp and GAIA, effectively handling long-horizon planning, retrieval, and recovery from execution errors. Benchmarked by [Artificial Analysis](https://artificialanalysis.ai/models/minimax-m2), MiniMax-M2 ranks among the top open-source models for composite intelligence, spanning mathematics, science, and instruction-following. Its small activation footprint enables fast inference, high concurrency, and improved unit economics, making it well-suited for large-scale agents, developer assistants, and reasoning-driven applications that require responsiveness and cost efficiency. To avoid degrading this model's performance, MiniMax highly recommends preserving reasoning between turns. Learn more about using reasoning_details to pass back reasoning in our [docs](https://openrouter.ai/docs/use-cases/reasoning-tokens#preserving-reasoning-blocks).
Models with similar or better quality but different tradeoffs
Compare performance with other models from the same creator
How this model performs across different benchmarks
Compare cost efficiency across all models
Performance trends across all benchmark runs
Number of benchmark runs over time
Get started with this model using OpenRouter