All models

NVIDIA: Llama 3.3 Nemotron Super 49B V1.5

by NVIDIA

Llama-3.3-Nemotron-Super-49B-v1.5 is a 49B-parameter, English-centric reasoning/chat model derived from Meta’s Llama-3.3-70B-Instruct with a 128K context. It’s post-trained for agentic workflows (RAG, tool calling) via SFT across math, code, science, and multi-turn chat, followed by multiple RL stages; Reward-aware Preference Optimization (RPO) for alignment, RL with Verifiable Rewards (RLVR) for step-wise reasoning, and iterative DPO to refine tool-use behavior. A distillation-driven Neural Architecture Search (“Puzzle”) replaces some attention blocks and varies FFN widths to shrink memory footprint and improve throughput, enabling single-GPU (H100/H200) deployment while preserving instruction following and CoT quality. In internal evaluations (NeMo-Skills, up to 16 runs, temp = 0.6, top_p = 0.95), the model reports strong reasoning/coding results, e.g., MATH500 pass@1 = 97.4, AIME-2024 = 87.5, AIME-2025 = 82.71, GPQA = 71.97, LiveCodeBench (24.10–25.02) = 73.58, and MMLU-Pro (CoT) = 79.53. The model targets practical inference efficiency (high tokens/s, reduced VRAM) with Transformers/vLLM support and explicit “reasoning on/off” modes (chat-first defaults, greedy recommended when disabled). Suitable for building agents, assistants, and long-context retrieval systems where balanced accuracy-to-cost and reliable tool use matter.

Avg Score

0.0%

0 answers

Avg Latency

0ms

0 runs

Pricing

$0.10

input

/

$0.40

output

per 1M tokens

Context

131K

tokens

Alternatives

Models with similar or better quality but different tradeoffs

No alternatives found

Run benchmarks on this model to discover alternatives

Other Models from NVIDIA

Compare performance with other models from the same creator

Benchmark Performance

How this model performs across different benchmarks

No benchmark data available

Run benchmarks with this model to see performance breakdown

Price vs Performance

Compare cost efficiency across all models

Current model
Other models
X-axis uses log scale for better visualization of price range

Score Over Time

Performance trends across all benchmark runs

No score trend data

Score history will appear here after multiple runs

Benchmark Activity

Number of benchmark runs over time

No activity data

Activity will appear here after benchmark runs

Quickstart

Get started with this model using OpenRouter

View on OpenRouter
import { OpenRouter } from "@openrouter/sdk";

const openrouter = new OpenRouter({
  apiKey: "<OPENROUTER_API_KEY>"
});

const completion = await openrouter.chat.completions.create({
  model: "nvidia/llama-3.3-nemotron-super-49b-v1.5",
  messages: [
    {
      role: "user",
      content: "Hello!"
    }
  ]
});

console.log(completion.choices[0].message.content);

Get your API key at openrouter.ai/keys